

Kubernetes Community Release – Kubernetes Overview Page 1/7

Introduction

This document introduces Kubernetes and the available logging options. This document is provided “as
is”. It is highly recommended to practice before trying these instructions in production!

Kubernetes is a portable, extensible, open-source platform for managing containerized workloads and
services that facilitates declarative configuration and automation. It has a large, rapidly growing
ecosystem. Kubernetes services, support, and tools are widely available.

Kubernetes Overview

Containers are a good way to bundle and run your applications. In a production environment, you need
to manage the containers that run the applications and ensure no downtime. For example, if a
container goes down, another container must start. It is easier if a system handled this behaviour.

Kubernetes provides you with a framework to run distributed systems resiliently. It takes care of scaling
and failover for your application, provides deployment patterns, and more.

For example: Kubernetes can easily manage a canary deployment for your system. A canary
deployment, or canary release, is a deployment pattern that allows you to roll out new code/features to
a subset of users as an initial test.

Kubernetes provides you with:

• Service discovery and load balancing Kubernetes can expose a container using the DNS name
or its own IP address. If traffic to a container is high, Kubernetes can load balance and
distribute the network traffic so that the deployment is stable.

• Storage orchestration Kubernetes allows you to automatically mount a storage system of your
choice, such as local storage, public cloud providers, and more.

• Automated rollouts and rollbacks You can describe the desired state for your deployed
containers using Kubernetes, and it can change the actual state to the desired state at a
controlled rate. For example, you can automate Kubernetes to create new containers for your
deployment, remove existing containers and adopt all their resources to the new container.

• Automatic bin packing You provide Kubernetes with a cluster of nodes that it can use to run
containerized tasks. You tell Kubernetes how much CPU and memory (RAM) each container
needs. Kubernetes can fit containers onto your nodes to make the best use of your resources.

• Self-healing Kubernetes restarts containers that fail, replaces containers, kills containers that
don't respond to your user-defined health check, and doesn't advertise them to clients until
they are ready to serve.

• Secret and configuration management Kubernetes lets you store and manage sensitive
information, such as passwords, OAuth tokens, and SSH keys. You can deploy and update
secrets and application configuration without rebuilding your container images, and without
exposing secrets in your stack configuration.

• Batch execution In addition to services, Kubernetes can manage your batch and CI workloads,
replacing containers that fail, if desired.

• Horizontal scaling Scale your application up and down with a simple command, with a UI, or
automatically based on CPU usage.

• IPv4/IPv6 dual-stack Allocation of IPv4 and IPv6 addresses to Pods and Services
• Designed for extensibility Add features to your Kubernetes cluster without changing

upstream source code.

Kubernetes Community Release – Kubernetes Overview Page 2/7

Kubernetes Log Types

In Kubernetes clusters, logging is crucial for monitoring, debugging, and maintaining the health of
applications and the cluster itself. There are several types of logs you might encounter, each
serving different purposes:

Container Logs

• Application Logs: Generated by the applications running inside your containers. These logs can

provide insights into the application's behavior, errors, and performance metrics.
• Standard Output and Error (stdout/stderr): Kubernetes captures the output from the

standard output and standard error streams of the containers. These logs are accessible via
kubectl logs <pod-name> and are often used for debugging and monitoring.

Kubernetes System Logs

• Kubelet Logs: Logs from the Kubelet, which is the agent running on each worker node. It

manages container runtime, node status, and communication with the Kubernetes control
plane.

• Kube-apiserver Logs: Logs from the Kubernetes API server, which is responsible for handling
API requests from clients and maintaining the cluster state.

• Kube-controller-manager Logs: Logs from the controller manager, which runs controllers
responsible for managing the state of the cluster, such as replication controllers and
deployments.

• Kube-scheduler Logs: Logs from the scheduler, which is responsible for assigning Pods to
worker nodes based on resource availability and other constraints.

• etcd Logs: Logs from /etcd, the key-value store used by Kubernetes to store all cluster data and
configuration.

Infrastructure Logs

• Node Logs: System logs from the underlying nodes (operating system and hardware logs).

These logs can provide insights into issues at the node level.
• Networking Logs: Logs related to networking components like CNI (Container Network

Interface) plugins or network policies, which are important for diagnosing network issues.

Audit Logs

• Kubernetes Audit Logs: Record all API requests made to the Kubernetes API server. These logs

provide details about what actions were taken, by whom, and when, and are useful for security
auditing and troubleshooting.

Cluster-level Logs

• Control Plane Logs: Collectively refers to logs from the Kubernetes API server, controller

manager, and scheduler. These logs are critical for understanding the operations and health of
the Kubernetes control plane.

• Scheduler Logs: Provides information on scheduling decisions made by the Kubernetes
scheduler.

Kubernetes Community Release – Kubernetes Overview Page 3/7

Custom and Sidecar Logs

• Sidecar Containers: Containers running alongside your main application containers within the

same Pod. They often handle logging or monitoring tasks and generate their own logs.
• Custom Logs: Logs generated by custom logging agents or tools that you deploy within your

cluster for specific purposes, such as log aggregation or processing.

Kubernetes Audit Logs

Kubernetes audit logs help maintain security, compliance, and operational integrity within a
Kubernetes cluster. They provide a detailed record of all actions and events, offering insight into who
accessed the system, what actions were performed, and when they occurred.

While Kubernetes monitoring tools focus on performance and resource management, audit logs
primarily serve security, compliance, and operational integrity objectives. By leveraging a Kubernetes
audit log, administrators can detect and investigate security breaches, troubleshoot issues, track
configuration changes, and ensure adherence to regulatory requirements — ultimately enhancing the
overall reliability and trustworthiness of the Kubernetes environment.

Security and Compliance Considerations

The Kubernetes ecosystem is a dynamic one. Containerized applications are constantly being deployed,
scaled, and updated. Kubernetes audit logs play a pivotal role in meeting various security and
compliance requirements such as:

• Health Insurance Portability and Accountability Act (HIPAA)
• Payment Card Industry Data Security Standard (PCI DSS)
• General Data Protection Regulation (GDPR)
• National Institute of Standards and Technology (NIST) Cybersecurity Framework

Kubernetes Community Release – Kubernetes Overview Page 4/7

How Kubernetes Audit Logs Help You Meet These Standards

Here are examples of how they contribute to meeting compliance standards.

• Visibility and Accountability: Kubernetes audit logs provide visibility into system activities,
enabling organizations to track user actions, resource accesses, and configuration changes. This
transparency fosters accountability and ensures adherence to security policies and regulatory
requirements.

• Forensic Analysis and Incident Response: In the event of a security breach or compliance
violation, Kubernetes audit logs serve as a vital source of information for forensic analysis and
incident response. By following the sequence of events recorded in the logs, security teams can
identify the root cause of incidents, assess the extent of damage, and take appropriate remedial
actions.

• Continuous Monitoring and Alerting: Automated monitoring of Kubernetes audit logs allows
you to detect suspicious activities and anomalies in real time. By configuring alerts based on
predefined security policies and thresholds, deviations from normal behavior can be promptly
identified, investigated, and mitigated. This serves to greatly reduce the risk of security
breaches and compliance failures.

• Evidence for Audits and Compliance Reporting: During audits and compliance assessments,
Kubernetes audit logs serve as concrete evidence of security controls implementation and
adherence to regulatory requirements. Presenting comprehensive and well-maintained audit
trails demonstrate your commitment to maintaining a secure and compliant Kubernetes
environment.

Understanding Kubernetes Audit Logs

Kubernetes audit logs capture a comprehensive record of all activities and events occurring within the
cluster, including user actions, API requests, and configuration changes. These logs are invaluable for
security, compliance, and troubleshooting purposes, enabling administrators to track changes, detect
unauthorized access or actions, investigate incidents, and maintain regulatory compliance.

Kubernetes Community Release – Kubernetes Overview Page 5/7

Events Captured in Kubernetes Audit Logs

Kubernetes audit logs offer administrators valuable insights into the activities occurring within their
clusters, facilitating security monitoring, compliance enforcement, troubleshooting, and incident
response efforts.

Various types of events are captured to provide a comprehensive record of activities within the cluster.
Some common types of events include:

• Resource Access: These events track actions related to accessing Kubernetes resources such as
pods, services, configmaps, secrets, and persistent volumes. Examples include requests to
create, read, update, or delete these resources.

• Authentication and Authorization: Events related to user authentication and authorization
are logged, including successful and failed login attempts, token authentication, role-based
access control (RBAC) decisions, and authorization failures.

• API Server Requests: Kubernetes API server requests are documented, including API calls to
list resources, watch for changes, create or update objects, and perform operations like scaling
deployments or updating configurations.

• Policy Enforcement: Events related to the enforcement of network policies, pod security
policies, and other Kubernetes security policies are captured. This includes actions taken by
admission controllers to validate and enforce policies.

• Cluster-Level Operations: Events involving cluster-wide operations such as node
management, pod scheduling, namespace creation, role binding updates, and cluster role
assignments are recorded to provide visibility into administrative activities.

• Audit Configuration Changes: Changes to the audit logging configuration itself, such as
modifications to audit policy rules, log storage settings, or audit sink configurations, are also
tracked to clarify changes to the auditing setup.

Kubernetes Community Release – Kubernetes Overview Page 6/7

Kubernetes Architecture

Kubernetes cluster consists of a single node or multiple nodes. In Kubernetes, if you need to run a
single container, the container will be created inside a pod. A pod can have a single container or
multiple containers.

Kubernetes Cluster Auditing

Control plane manages the worker nodes, and the worker nodes host the pods. The API server is a
component of the Kubernetes control plane that exposes the Kubernetes API. The core component of
the control plane is the kube-apiserver. The kube-apiserver is a REST based front end service for all the
external users, nodes, and services to interact with each other. Every command executed in the
Kubernetes environment will be processed by the kube-apiserver. The Kubernetes API server is
responsible for authentication and authorization.

 Figure 3: Source: https://kubernetes.io/docs/concepts/overview/components/

Kubernetes API Audit Logs

Kubernetes API records all the API requests made to kube-apiserver by the users and the Kubernetes
internal services as well. The audit log provides a lot of information such as source IP address, time of
the request, user info, and request and response information. Audit logs trace abnormalities in the
cluster environment such as failed login attempts or any malicious activity.

Kubernetes Community Release – Kubernetes Overview Page 7/7

Audit Logging Stages

The kube-apiserver allows us to capture the logs at various stages of a request sent to it. This includes
the events at the metadata stage, request, and response bodies as well. Kubernetes allows us to define
the stages which we intend to capture. The following are the allowed stages in the Kubernetes audit
logging framework:

• RequestReceived: As the name suggests, this stage captures the generated events as soon as
the audit handler receives the request.

• ResponseStarted: In this stage, collects the events once the response headers are sent, but just
before the response body is sent.

• ResponseComplete: This stage collects the events after the response body is sent completely.
• Panic: Events collected whenever the API server panics.

There are lots of calls made to the API server, and we need a mechanism to filter out the events based
on our requirements. Kubernetes auditing provides yet another feature for this very reason — the level
field in the policy configuration.

Audit Log Levels

The level field in the rules list defines what properties of an event are recorded. An important aspect of
audit logging in Kubernetes is, whenever an event is processed it is matched against the rules defined in
the config file in order. The first rule sets the audit level of logging the event. Kubernetes provides the
following audit levels while defining the audit configuration.

• None: This disables logging of any event that matches the rule.
• Metadata: Logs request metadata (requesting user/userGroup, timestamp,

resource/subresource, verb, status, etc.) but not request or response bodies.
• Request: This level records the event metadata and request body but does not log the response

body.
• RequestResponse: This level is more verbose than the other levels since this level logs the

Metadata, request, and response bodies.

